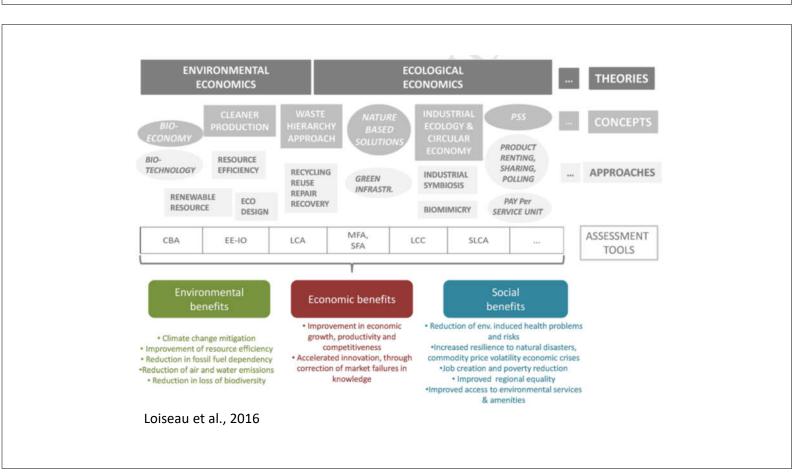


Víctor Milla

COMMUNICATING RISKS IN Decision Support Systems: from basic research to advance decision support tolos

June, 2018

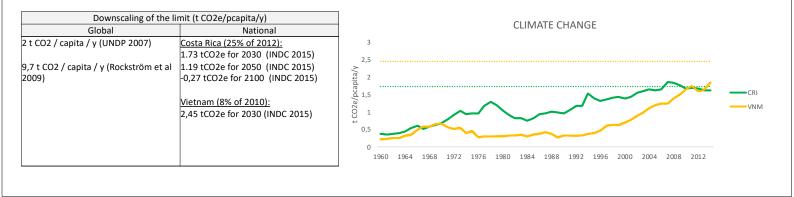


Green concepts

- Sustainable development: development that meets the needs of the present without compromising the ability of future generations to meet their own needs" (World Commission on Environment and Development, 1987)
- Green economy: one that results in improved well-being and social equity, while significantly reducing environmental risks and ecological scarcities (UNEP, 2011)
- From 1990 to 2016 "the literature research found 877 documents where the term "green economy" is mentioned in the title, the abstract or the keywords" (Loiseau et al., 2016)

Green concepts

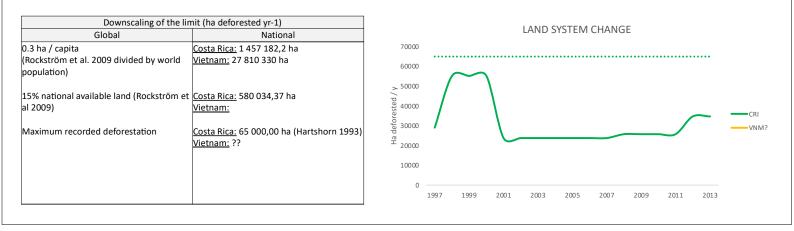
- Green growth: fostering economic growth and development while ensuring that the natural
 assets continue to provide the resources and the environmental services on which our well-being
 relies (OECD, 2011)
- Cleaner production: the continuous application of an integrated environmental strategy to
 processes, products and services to increase efficiency and reduce risks to humans and the
 environment (UNEP, 1990)
- **Circular eonomy:** an industrial economy that is restorative by design, and which mirrors nature in actively enhancing and optimizing the systems through which it operates (The Ellen MacArthur Foundation, 2012)
- Nature based solutions: actions to protect, sustainably manage, and restore natural or modified ecosystems, that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits (Cohen-Shacham, 2016)
- **Bioeconomy:** an economy using biological resources from the land and sea as well as waste, including food wastes, as inputs to industry and energy production. It also covers the use of biobased processes to green industries (The European Comission, 2012)

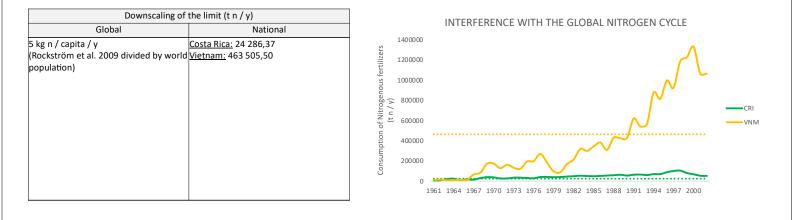


Green concepts

Green transformation: the pro-active restructuring of the economy in a way that respects planetary boundaries (Schmitz, 2015)

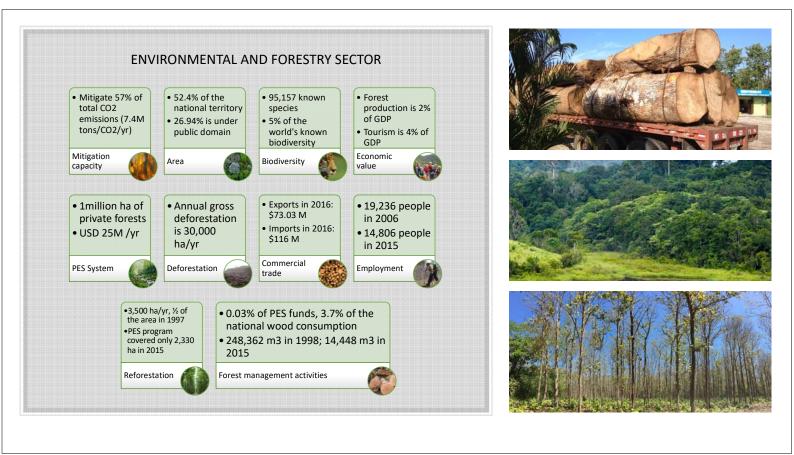
Technocentric transformation: meet rising demands in greener ways
Marketized transformation: recognize, and value economically, the natural capital on which growth depends
State-led transformation: re-embed markets in stronger frameworks of state control
Citizen-led transformation: de-growth and bottom-up transitions


		Indic	ators	Li	imit
Planet Boundary	Definition	Rockström et al (2009)	National	Global	National
	The climate-change boundary proposed here aims at	Atmospheric CO2	CO2 Emissions per	350–550 ppm (Rockström	Costa Rica:
	minimizing the risk of highly non-linear, possibly abrupt and	concentration (parts	Capita (WB)	et al 2009)	10.9 MtCO2e for 2021
	irreversible, Earth System responses (National Research	per million by			(INDC 2015)
	Council (NRC) 2002, IPCC 2007b) related to one or more	volume)	CO2 Emissions in the	393,81 ppm (NOAA 2013)	9.37 MtCO2e for 2030
	thresholds, the crossing of which could lead to the	Gt CO2-eq./yr	agriculture and		(INDC 2015)
	disruption of regional climates (Lenton et al. 2008), trigger the collapse of major climate dynamics patterns such as the				5.96 MtCO2e for 2050 (INDC 2015)
Climate shares					r <i>'</i>
Climate change	thermohaline circulation (Clark et al. 2002), and drive other impacts difficult for society to cope with, such as rapid sea-		CO2 Emissions in the environmental and	wiedmann 2014)	170,500 t of GHG per yea (INDC 2015)
					(INDC 2015)
	level rise. The risk of crossing such thresholds will rise sharply with further anthropogenically driven deviation from		forestry sector (WB)		<u>Vietnam:</u>
	the natural variability of the Holocene climate.		Nitrous oxide		474.1 MtCO2e for 2020
			emissions (WB)		(INDC 2015)
					787,4 MtCO2e for 2030
					(INDC 2015)


		Indi	cators	Limit		
Planet Boundary	Definition	Rockström et al (2009)	National	Global	National	
Rate of Biodiversity Loss	evidence of the importance of biodiversity for sustaining ecosystem functioning and services and for preventing ecosystems from tipping into undesired states (Folke et al.	Extinction rate, extinctions per million species per year (E/MSY)	protected areas (WB)	<10 E/MSY (10–100 E/MSY) (Rockström et al 2009)	NA	

Planet Boundary		Indic	ators	Limit		
	Definition	Rockström et al (2009)	National	Global	National	
and-System Change	expansion and intensification, contributes to global	Percentage of global land cover converted to cropland		<15% of global ice- free land surface converted to cropland (Rockström et al 2009)	NA	

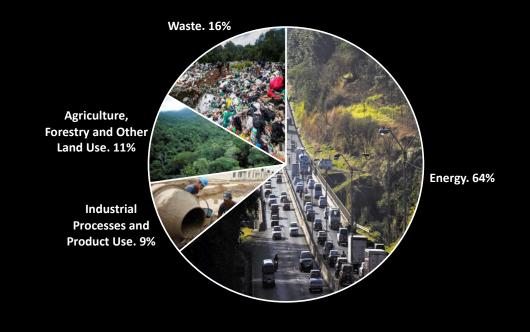
Planet Boundary		India	cators	Limit		
	Definition	Rockström et al (2009)	National	Global	National	
Interference with the Global Phosphorus and Nitrogen Cycles	overfishing, land degradation) and increase in N and P flows at regional to global scales may cause undesired non-linear change in terrestrial, aquatic, and marine systems, while simultaneously functioning as a slow driver influencing anthronogenic	atmosphere for	Consuption of Nitrogenous Fertilizers (tonnes) (FAO)	35 Mt (Rockström et al 2009) 121 Mt (Nykvist 2013)	NA	



Planet Boundary		Indic	ators	Li	imit
	Definition	Rockström et al (2009)	National	Global	National
Stratospheric ozone depletion	ozone-depleting substances, but also on sufficiently cold	concentration (Dobson units - DU)	Consumption of Ozone-Depleting Substances - ODS (tonnes) (UNEP) PM2.5 air pollution (micrograms per cubic meter) (WB)	<5% reduction from pre- industrial level of 290 DU (5%–10%) (Rockström et al 2009) 283 DU (WMO 2010)	NA

Downscaling of the	limit (ODS tonnes)	STRATOSPHERIC OZONE DEPLETION
Global	National	STRATOSPHERIC OZONE DEPLETION
Due to the longevity of ODS and the	NA	9.00
fact that much of the use of ODS		8.00
has already been phased out,		7.00
essentially removing the driver behind ozone depletion, the global PB of a 5% reduction in the thickness of the global ozone layer (state) cannot easily be translated		
into national variables on emissions. However, a relevant indicator for		3.00 V V 2.00 V
measuring national territorial		1.00
performance is the use of ODS (Nykvist 2013)		0.00

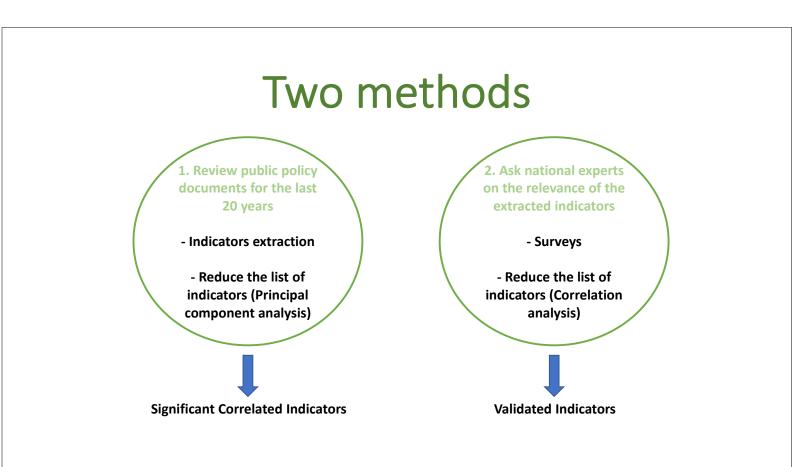
Costa Rica: why the land use sector matters?



<section-header><image><image><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

	W			
Electricity production	Economic value	Agricultural production	Management	
 75.3% of electricity supply Less than 1% of the energy matrix-fossil fuels 75% of hydropower generation potential has not yet been exploited 	 US\$280 M in drinking water and sanitation activities 0.5% of GDP 	 75% of the water extracted 765 million cubic meters of water extracted in 2012 Water delivered by irrigation districts to users is billed at \$0.01/m3 	 Half of the water extracted for irrigation is lost Only 20% of the population is connected to sewage networks 5% of the country's wastewater is treated before being deposited in rivers 57% of rivers and estuaries of the country have high levels of pollution 	

CO2e emissions in Costa Rica


Data for 2012. IMN 2015. 2006 IPCC Guidelines


Two big questions

1. How to design a monitoring framework for public policies to measure a green transformation in the land use sector in Costa Rica? (Phase 1)

2. What is the best approach to measure the selected indicators? (Phase 2)

Steps for each method

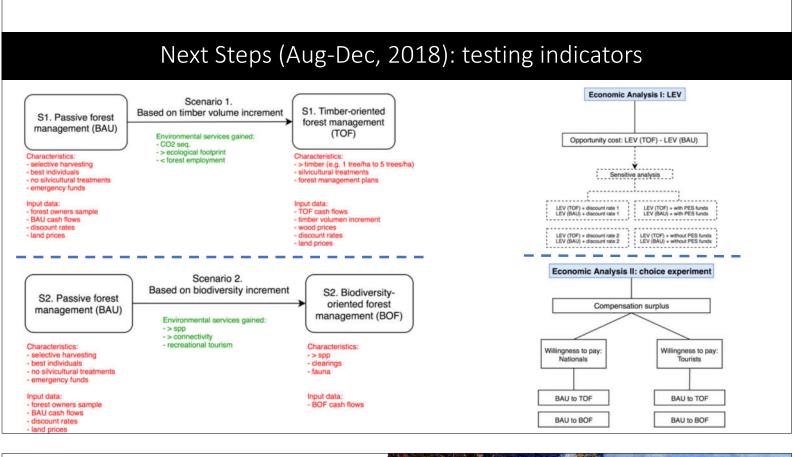


Indicator	Code	Component 1	Component 2
Public forests	VAR00002	0.937	-0.082
CO2 Emissions in the agriculture and livestock sector	VAR00003	0.350	-0.818
CO2 Emissions per Capita	VAR00005	0.708	0.577
Agriculture and livestock value added	VAR00013	0.958	-0.165
International tourism receipts	VAR00015	0.972	0.029
Wood consumption	VAR00017	0.043	0.660
Gross domestic product per capita	VAR00027	0.988	-0.095
Growth rate of real GDP per employed person	VAR00028	0.986	-0.095
Gini Index	VAR00031	0.106	0.813
Human Development Index	VAR00032	0.991	0.050
Access to Drinking Water	VAR00034	0.986	0.115

Significant correlated indicators

Indicator	Best correlation	V1	V3	V5	V6	Best evaluated indicator	Cum.%
Gross domestic product per capita	Growth rate of real GDP per employed person	0,912	0,514	10	2	Gross domestic product per capita	78,90
Growth rate of real GDP per employed person	Gross domestic product per capita	0,912	0,536	11	4	Gross domestic product per capita	78,90
Livestock area	Agriculture area	0,881	0,482	10	2	Livestock area	91,20
Agriculture area	Livestock area	0,881	0,515	11	2	Livestock area	91,20
Agriculture and livestock value added	Forestry and environmental value added	0,858	0,483	8	3	Forestry and environmental value added	91,20
Forestry and environmental value added	Agriculture and livestock value added	0,858	0,489	8	3	Forestry and environmental value added	91,20
Head of State's advocacy for green issues	National and International Climate Policy	0,801	0,466	7	4	National and International Climate Policy	94,70
National and International Climate Policy	Head of State's advocacy for green issues	0,801	0,471	8	2	National and International Climate Policy	94,70
Poverty gap at national poverty lines	Rural poverty gap at national poverty lines	0,788	0,518	10	5	Rural poverty gap at national poverty lines	85,90
Rural poverty gap at national poverty lines	Poverty gap at national poverty lines	0,788	0,497	10	3	Rural poverty gap at national poverty lines	85,90
Private forests	Public forests	0,779	0,466	7	3	Private forests	94,70
Balance of trade in forest products	Wood consumption	0,739	0,511	12	2	Wood consumption	84,20
Good farming practices	Government Effectiveness	0,713	0,525	12	4	Government Effectiveness	94,70
Government Effectiveness	Good farming practices	0,713	0,484	9	2	Government Effectiveness	94,70
Area under forest management	Illegal logging	0,663	0,458	8	2	Illegal logging	91,30
Illegal logging	Area under forest management	0,663	0,459	8	2	Illegal logging	91,30
Reforestation	Private forests	0,661	0,478	10	2	Reforestation	91,20
Area purchased by the state for conservation	Good farming practices	0,634	0,503	11	3	Good farming practices	92,90
Valuation of environmental damage	Area under forest management	0,625	0,523	12	5	Area under forest management	87,70

Validated Indicators

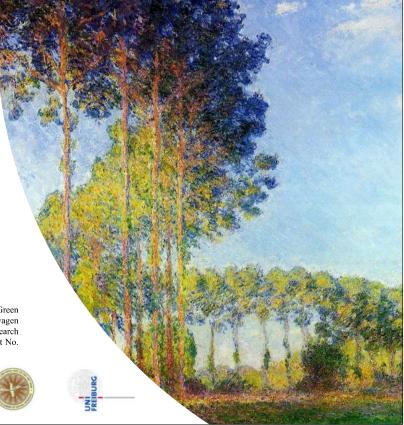


Category	Indicator	SCI	VI	AD	Unit	References
Carbon	CO2 Emissions in the agriculture and livestock sector	\checkmark		\checkmark	gG CO2e	Himics et al., 2018
emissions and sequestration	CO2 Emissions per Capita	~		\checkmark	m-tons PC	UN, 2007; Mehdi and Slim, 2017; EU 2017; Simas et al., 2017
	Livestock area		\checkmark		ha	Pubule et al., 2017; Simas et al., 2017
Area	Public forests	\checkmark		\checkmark	ha	UN, 2007; Witheman et al., 2015; Sardain et al., 2016; Brambila and Flombaum, 2017
	Private forests		\checkmark		ha	Witheman et al., 2015
	Reforestation		\checkmark		ha	Dinh Le et al., 2012; Agol et al., 2014
Climate change commitment	National and International Climate Policy		\checkmark			Tamanini, 2016
Environmental damage	Illegal logging		√		m3	Tegegne et al., 2014
	Agriculture and livestock value added	\checkmark		\checkmark	USD	Alamdarlo, 2016; Zafeiriou and Azam, 2017
	Forestry and environmental value added		\checkmark	\checkmark	USD	Tegegne et al., 2014
Productivity	International tourism receipts	\checkmark		\checkmark	USD	UN, 2007
Productivity	Area under forest management		\checkmark		ha	UN, 2007; Tegegne et al., 2014
	Wood consumption	\checkmark	\checkmark	\checkmark	m3	Blettert et al., 2017
	Good farming practices		\checkmark		# proj.	Maxim, 2012; Pubule et al., 2017; Kelly et al., 2018; EU, 2017
	Government Effectiveness		\checkmark	\checkmark	NA	Kaufmann et al., 2010
	Gross domestic product per capita	\checkmark	\checkmark	\checkmark	NA	UN, 2007; Mozumder et al., 2006; Sardain et al., 2016; EU, 2017
State	Growth rate of real GDP per employed person	\checkmark		\checkmark	NA	П.О, 2013
effectiveness	Rural poverty gap at national poverty lines		\checkmark	\checkmark	%	UN, 2007
	Gini Index	\checkmark		\checkmark	NA	Otoiu et al., 2014; Sardain et al., 2016; EU, 2017
	Human Development Index	\checkmark		\checkmark	NA	Jha and Murthy, 2003; Otoiu et al., 2014
Water	Access to Drinking Water	\checkmark		\checkmark	% of pop.	UN, 2007; Cook et al., 2017; OECD, 2017

Merged Indicators

Víctor Milla vmilla@catie.ac.cr http://greets-project.org http://suforun.ctfc.cat

Thanks!


We would like to acknowledge the funding of this study by the research project "GreeTS: Green Transformations in the Global South" (www.greets- project.org) that is funded by the Volkswagen Foundation, Riksbankens Jubileumsfond and Wellcome Trust. The study also benefited from the research ex- change platform provided by the SuFoRun project (Marie Sklodowska- Curie Grant Agreement No. 691149).

